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Abstract 

A suitable weak topology is considered on the Hilbert phase space of a quantum- 
mechanical system. It is then shown that if two bounded observables of the system have 
no common eigenvector, the sum of their variances in any state is always greater than 
some positive constant. Consequences of this result on some observables of simple 
physical systems are examined. First of all, the case of the position and momentum of 
the elementary particle in one dimension is studied and a comparation with Heisenberg's 
indeterminacy principle is carried out. Then, the case of angular variables is also examined, 
with special emphasis on spin 1/2. An experiment with neutrons is finally suggested and 
analysed with the help of the theory developed. 

t .  Introduction 

Given  two observables  X, Y canonica l ly  re la ted- - i . e ,  obeying  the 
c o m m u t a t i o n  rule [X, Y] = / h - - H e i s e n b e r g ' s  uncer ta in ty  pr inciple  asserts  
tha t  the  p r o d u c t  o f  their  var iances  is a lways greater  than  or  equal  to (h/2) 2. 
Our  a im,  in the  present  paper ,  is to deal  with a related sor t  o f  'weak  un- 
cer ta in ty  p r inc ip le ' :  ( W U P )  i f  two b o u n d e d  observables  X and Y have no 
c o m m o n  eigenstate,  then the sum of  their  var iances  is a lways greater  than  
some posi t ive  constant .  This is p roved  as the theorem 3.1, a t  the beginning 
o f  Sect ion 3. Some p re l iminary  ma themat i ca l  tools,  needed for  the p r o o f  
and  essent ial ly  o f  a topo log ica l  nature,  are  developed in Section 2. 

As  i t  can  be verified f rom the cons idera t ions  which will fol low, W U P  
seems wor thy  o f  a t ten t ion  in its own. Indeed,  it  can be appl ied  no t  only to 
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pairs of observables canonically related~f but also to observables which 
are not canonically related--thus, to which Heisenberg's relation does not 
apply.:~ Furthermore, it may eventually lead to quite a variety of technical 
results--an example of which is found in Alvim (1970). 

But there is still other reasons for considering WUP. Indeed, when 
studying the lattice-theoretical foundations of (non-Relativistic) Quantum 
Mechanics,w two species of pairs of observables are naturally singled out. 
One species is formed by the pairs whose components do commute and the 
other species by those whose components have no common eigenstates. 
Now, WUP applies exactly to this last kind of pairs. The importance of 
this fact is better understood if we heed yon Neumann's comments on 
Bohr's 1927 'complementarity lecture' (as described in Jammer (1966), 
p. 354). 

Furthermore, WUP is a purely qualitative assertion, in the sense that its 
premise depends only on a 'non-numerical' property of X and Y. As a 
consequence of such a property, it follows the existence of a lower bound 
for the sum of the variances of X and Y. This situation must be compared 
with the orthodox quantum mechanical context, where Heisenberg's 
uncertainty relation is deduced from a quantitative law (i.e. [ I ,  Y] = r 
Heisenberg saw in his indeterminacy principle the 'direct intuitive inter- 
pretation' of the canonical commutation rules (cf. Jammer (1966), p. 328). 
On the other hand, as noted by Born,�82 the canonical commutation rules 
are the equations which introduce Planck's constant in Quantum Mech- 
anics. From all this and assuming a quite unorthodox point of view, we 
might consider WUP as a step--yet rather primitive--towards introducing 
h in (non-Relativistic) Quantum Mechanics through intuitive, elementary 
and qualitative principles. 

Finally, we remark that very often we will call 'the orthodox context of 
Quantum Mechanics' today's Quantum-Mechanical formalism without 
WUP. It must be emphasised, however, that WUP is deduced entirely 
within the orthodox Hilbert-space formahsm of (non'-Relativistie) 
Quantum-Mechanics. Furthermore, it would still be valid even if some 
parts of such a formalism fail to hold. Thus, in Sections 3 to 5 we con- 
template the possibility that some operators, which in the orthodox context 
are supposed to obey the canonical commutation rules, actually may not 
do sol] but still obey WUP. This supposition poses itself as a natural object 
of study, due to the cleavage of the pairs of 'lattice-theoretical observables' 
into the two species we have indicated above. 

Cf. Section 3; in Section 4 we examine a closely related situation. 
:~ Cf. Section 5. 
w We must add here: 'such a study being Ca,Tied out from the standpoint of an 

atomlstic-operational heuristics'. The operational standpoint  was developed in Alvim 
(1969). 

Cf. Born et aL (1926), ch. 1, comments on equation (5). See also Jammer (1966), 
p. 211. 

{I Or, obey the Canonical commutation rules but have the variances in their measure- 
meats acted upon by some kind of yet unknown interference. 
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2. Weak Convergence on the Set of States of a Quantum-Mechanical 
System 

Let H be a complex separable Hilbert space and B the real vector space 
of  bounded linear self-adjoint operators on H. Let S be the set of all linear 
functionals p: B -~ R which are of the form 

p ( X ) =  ~ )~j(X't)., V)  

where the vj are normalised elements of H and the Aj real coefficients such 
that 0 < t i <  l, ~ ,  Aj= 1. 

Definition 2.1--By the weak topology of B we will understand the weakest 
topology on B under which the linear functionals p ~ S are continuous. 
The space B, endowed with this topology, is then a topological vector 
space which will be denoted henceforward by wB. 

We are specially interested in the dual wB of wB; that is to say, Jn the 
real vector space of continuous linear mappings from wB into R. By 
definition 2.1 we have S c wB. 

Definition 2.2--By the weak topology of wB we will understand the 
weakest topology on wB under which the linear functionals �9 (X): f - - ~ f  (X), 
from wB into R, are continuous for every X E B. The space wB, endowed 
with this topology, is then a topological vector space which will be denoted 
henceforward by wwB. 

The weak topology of wB is Hausdorff and locally convex; a basis of 
neighbourhoods for f0 c wwB is given by the sets V(fo, N, S) = { f :  f e  wwB, 
I f ( X )  - f0 (X) ]  < 3 for all XE N}--where N runs over all the finite sets 
of elements of wB and 3 runs over the positive reals. A sequence 
{fj} c wwB converges weakly (to the element f ~  wwB) if and only if 
limf~.(X) = f ( X )  for every X E wB. 

Now, let us recall that if X e  B, the norm of Xis  defined as 

ftxll = s u p { l ( x v ,  x v ) ' / 2 i  �9 v ~ H,  ~,v, ~ = l} 

By its turn, f o r f e  wB the norm o f f  is defined as 

II f]l = sup {1 f (X) [  : X e B, II = 1) 

We have a result similar to Alaoglu's theorem: 

- -  m 

Theorem 2.3--The unity ball @ = { f : f ~ w w B ,  Ilf] I ~ 1} of wwB is 
compact. 

Proof--See, for instance, Dunford & Schwartz (1958), v. 4.1-v. 4.2. 
30* 
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But besides being compact when endowed with its relative topology as 
a subset of wwB, the unity ball is then also a metrisable topological space. 
In order to show this, we need some auxiliary notation and results. 

Let A be the complex vector space of all linear bounded transformations 
in H and C the subspace of A formed by all the compact linear trans- 
formations in H. By wA we understand A endowed with the weakest 
topology under which the linear functionals J(--+ ~j~--i (Xvj, wj) from A 
into C--where {v j}, {w j} are any sequences of elements of H such that 
~d~l ((vj, v i )  + (wj, wj)) < oo--are all continuous.t The dual of wA will 
be denoted wA (we will not need to define any topology on it; wA will be 
considered merely as a complex vector space). 

The norm l[xll of an element x c  A being defined in the usual way, we 
denote by nC the space C endowed with the uniform operator topology. 
In the dual nC of nC we consider also the usual norm topology--the 
resulting topological vector space being denoted by nnC and its dual by 

nnC. 
It is known (see, for instance, Dixmier (1950), p. 394) that there exists 

an isometric isomorphism 0: nnC--+ A such that, if ~ is the canonical 

imbedding of nC into m~C, then O(Z(X)) ~ X, V X e  nC. A n y f ~  n--C may 
be taken as the restriction to C of the linear functional f over A whose 
action is given by the formula f ( x ) =  O-I(X).( f) ,  V X e  A. It happens 
furthermore that the elements of wA are exactly the 'extensions' f of the 
functionals f ~  nC, constructed as just described (Dixmier (1950), p. 398). 

We also know~ that nC contains a dense countable subset {Uj}. Let us 
suppose now that f o ( u i ) =  0 for all Uj and some f0 ~ wA. But f0(Uj)=  0 
implies fo (u j )= O-l(Uj).(fo)= 0 and as 0(3(Uj))= Uj, it follows that 
Z(U;) . ( fo)- fo(Uj)  = 0 for all Uj. From this we can deduce that fo is 
then the null element of nC and, going back to f0 (x  ) = O-l(X).(fo), we 
finally conclude thatfo is also the null element of~fA. 

Taking into account the above result, we proceed to prove the 

Lemma 2.4--There is a countable set {Xo, } c wB such that if r e  wB and 
f ( X j )  = 0 for all Xj, t hen f i s  the null functional of wB. 

Proof--From the above considerations, it follows that there exists a 
countable set {Uj} c wA such __that if f0 e wA and fo(Uj) = 0 for all U~., 
thenfo is the null functional of wA. Let us write each X ~ wA with the help 
of self-adjoint transformations, in the usual way: X = X ~  +iX2 with 
X1, Yz ~ wB. Now suppose that f ~  wB and f (U i j )  =f(UEj)  = 0 for alI 
the self-adjoint components U~j, U2j of the transformations U~. But the 
functional f defined by the equation f ( X ) = f ( X ~ ) +  ~f(X2) belongs to 

"~ This topology corresponds to the 'topologie ultrafaible' defined in Dixmier (t953) 
and to the ~topologie e (~ ,3- ' ) '  of Dixmier (1950). 

Dixmier (1950), p: 392, proposition 4. 
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w--A.]" Hence, as f__(Ui) = f ( U l j )  + if(U2~) = 0 + 0 = 0 for  all j ,  f is the 
null element o f  w A - - a n d  its restriction f to wB turns out  to be the null 

element o f  wB. 

Lemma 2 .5 - -Le t  {Xj} be the same set described in the previous lemma 
and X / =  Xi/llX A. Then, 

d(/,g)= = ( i 7  

defines a metric for  Q ; the corresponding (metric) topology being weaker 
or  equal to the relative topology  of  63 as a subset o f  wwB. 

Proof--I t  is easily verified that  d( f ,g )  is indeed a metric on Q ; lemma 2.4 
being used to show that  d( f ,g )  = 0 o f =  g. The second assertion o f  the 
lemma follows f rom the fact that  each open ball 

2 j '  (1 + [ ( f - f o )  Xj]) 

o f  centrefo and radius 8 contains a ne ighbourhood  

V(fo, {)~}s=~ ,2 . . . . .  ~, 8/2) = { f : f ~  63, [ f ( ~ / )  - f0() / 'y)  [ < 8/2 for all 

x,,. i., 
offo  in the relative topo logy  of  63, where ~a is determined by the condit ion 
1/(2", - 1) < 8/2. 

We may  now assert the 

Theorem 2 .6 - -The  unity ball Q,  endowed with its relative topology as 
a subset o f  wwB, is a compact  metrisable topological  space (which hence- 
forward will be denoted by t63). 

Proof--That  63 is a compac t  subset o f  wwB was established in theorem 
2.3, But a Hausdor f f  topology  over a set, weaker than a compact  topology 
over the same set, is necessarily equal to the compact  topology.{ Thus,  
the metric topology  defined on 63 by lemma 2.5 is. indeed equal to the 
relative topology  of  63 as a subset o f  wwB. 

1" This may be shown as follows. Let d be a closed set of complex numbers. It is easily 
verified that the weak topology of B is equal to the relative topology of B as a subset 
of wA. From the continuity of the functionals X ~ (Xv, v} from wA into t2', it follows 
also that B = n {X: (Xv, v} ~ R} is closed in wA. By the continuity of f in  wB, we have 

vEH 

that the sets Xt = {X~:f (XO is the real part of some 3, ~ A } and 5f2 = {X2:f(X2) is the 
imaginary part of some )t e A} are closed in wB and thus closed in wA: Let X* be the 
adjoint transformation of X~ wA. But then, by the continuity of the mapping X ~ X* 
in wA (see Dixmier (t950), p. 406), we deduce that the sets ~ = {Y: ~ Y +  Y*) e XI} 
and a#2={Y: (r are closed in wT. We may conclude, thus, that 
f-~(A) = 02r N ~r is a closed subset of wA. 

,+ See, for instance, D/mford & Schwartz (1958), i. 5.8. 
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We intend to use the above theorem to establish that S, endowed with 
its relative topology as a subset of ww--B, is a metrisabIe compact topological 
space. But, in order to do this, we need the following preliminary results: 

Lemma 2.7--Let D be the set of all orthogonal projections on the dosed 
linear subspaces of H. Then, if {p j} c S is a sequence converging weakly 
to f E  wwB, the restriction f / D  o f f  to D coincides with the restriction of 
some p e S to the same set. 

Proof--For the case in which dimH-_< 2, we can easily construct directly 
the p whose existence is asserted. Thus, we may assume that d imH > 3. 
LetpflD be the restriction ofpj  to D, X ~ the projection on the null-subspace 
of H, X 1 the identity operator on H. Each Pflo defines a measure on the 
set of closed manifolds of H, in the sense of Gleason (1957). Obviously, 
f / o ( X  ~ = 0 and f/D(X 1) = 1, with 0 <f /~(X)  < 1 for any X e  D. To show 
tha t f / o  also defines a Gleason measure, it must be proved then that f/D is 
countably additive. The proof that follows can be found in Gudder (1965), 
theorem 7.6wit is displayed here for the sake of completeness. Let {XC.} 
be a disjoint sequence of elements of D'~ and W c D the smallest Boolean 
a-algebra of projections containing {Xi}. By the Loomis representation 
theorem (see, for instance, Varadarajan (1968), theorem 1.3), there exists 
a set M, a or-algebra r  of subsets of M, and a r h from 

onto :~. We have that each pj induces a measure Pc' on dr' defined by 
p2(m) = pc'/D(h(cz)), Vcn E .~g. Defin ingf(~)  = f/D(h(~)) we have limpc'(cz) 
= limpj/o(h(~)) =f/o(h(~e)) =f(,~0,  V ~  E ~g. Thus, {pc.) is a sequence of 
countably additive scalar functions on the cr'field d / ,  such that limpc'(~n) 
=f(e,~) for all ~ ~ Jg .  By a theorem of Nikod3~n (see Dunford & Schwartz 
(1958), theorem iii. 7.4), it follows then t h a t f i s  countably additive on J [ .  
Let us write h(~zc') = Xc' and ~1 = ~1, ~2 = a~2 - -  ~ 1 ,  4e3 = 4vfr - -  (~r'~r [-J ~ 1 ) ,  
... ; obviously ~ f'l ?t = ~ for tf va v: and h(tj) = Xc" for a t l j .  Hence we have 

= Zf/o(XC.) 

We conclude, thus, tha t f /o  is a countably additive non-negative real valued 
function on D--or,  equivalently, on the set of all closed linear manifolds 
of  H. By Gleason's theorem (loc. cit.), we may then assert t h a t f / o  is the 
restriction to D of some functional belonging to S. 

Lemma 2.8--Let f E  wwB be a functional such that there exists p e S 
for whichf/D = p. Then, f =  p. 

Proof (cf. Gudder (1965), theorem 1A)--Given any X e B  and any 
> 0, we know that there exists a linear combination ~ . ~  ~:: XC. of elements 

"~ Tha t  is to say, Xj, .  X j .  = X ~ for  Xj, ,  Xc'. ~ {Xj} a n d j '  ~o/".  
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X j e  D, with real coefficients g ,  such that [ IX- ~ > l  ~sXs[[ =< 8.t Thus, 
as for any X e B we have 

+ f 1#  - f ( X )  <= x -  ~ +lif]l ~ # x j - x  
j= l  

we see that ]p(X) - f ( X ) [  is smaller than any arbitrary positive number--  
that is to say, f (X) =p(X)  for any X e  B. 

We are now ready to prove the 

Theorem 2.9--S, endowed with its relative topology as a subset of wgeB, 
is a metrisable compact topological space. 

Proof--It is easily verified that S c Q ; thus, by showing that S is closed 
in tQ s.~zh a result will follow immediately from theorem 2.6. Let us show 
then that if {pi} c S is a sequence converging (weakly) t o f ~  Q, t h e n f = p  
for some p e S.:~ But this is an immediate consequence of lemmas 2.7 and 
2.8. 

Corollary 2.10---Any sequence {Ps} c S has a weakly convergent sub- 
sequence--i.e, a subsequence {p f} such that there exists a p ~ S for which 
ps,(x) -+ p(X), v z ~  8. 

Proof--The corollary follows immediately from theorem 2.9, by standard 
topological results (see, for instance, Dunford & Schwartz (1958), theorem 
1.6.13). 

We proceed now to apply corollary 2.10 to the investigation of some 
'weak uncertainty principles' which may arise in the context of Quantum 
Theory. 

3. Uncertainty Bounds: The Sum and the Product of Variances. The 
Case of Linear Momentum and Position 

In all that follows we assume Schroedinger's formulation of Quantum 
Mechanics, as usually given in terms of Hilbert-space theory. According 
to it, pure states and observables correspond, respectively, to unit vectors 
and self-adjoint operators on the complex separable Hilbert space H of 
'wave functions' of the physical system. The pure and the mixed states of 

t See, for instance, Riesz & Sz. Nagy (1955), Section 107. 
:~ As wwB is a Hausdorff topological space and Q is compact, it follows that O is a 

closed subset of wwB and that a sequence {p j )  ~ O, if it converges in the topologies of 
wwB or t (3, may converge only to an element of Q. (Of course, for a sequence of elements 
of Q, convergence according to the topology of t O is equivalent to convergence according 
to the topology of wwB.) 
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the physical system (with phase-space H )  are exactly the functionals p of 
the set S introduced in Section 2. 

Let us say that an observable X is exactly  measured in the state p if its 
variance or dispersion in p-- i .e ,  the quantity ~ = p ( X 2 )  - (p(X))2--is 
null. It  is easily verified that an observable may be exactly measured only 
in pure states. Moreover, since yon Neumann 's  studies on the subject (see 
von Neumann (1932), iii.3) it is well known that X is exactly measured in 
the pure state p = (. v, v) if and only if v ~ H is a (normalised) eigenvector 
of  X. 

Now, let us suppose X and Y two bounded self-adjoint operators on H. 
We say that X and Y are strongly incompatible, and write X~ I ~ Y, if there 
is no element in H which is an eigenvector of  both X and Y. 

From our previous remarks, we have that X< j ~ Y implies that there is 
no state in which both X and Y can be exactly measured. But nothing 
seems to prevent us from finding states in S under which the variances of  
both X and Y could be as small as we please. That  the situation is not so 
is the outcome of  

Theorem 3 . l - - L e t  X and Y be bounded observables (i.e. bounded self- 
adjoint operators) on the complex separable Hilbert space H. Then, if 
X~ I ) Y there exists a positive real constant ~xr such that or} + ~ > "qxr 
for any state p E S. 

P r o o f - - A s  noted above, we have necessarily g} + e f >  0 for any 
state p. Suppose by absurd that no ~xr as described does exist. We would 
have then a sequence {p j} of  states for which lira (e~J + el/) = 0; by corollary 

j---)co 
2.10 we also would have a subsequence {p j,} of  {p j} converging weakly to 
some P0 E S. Now, from I i m ( ~  j + e~J)= 0 we get 0 = lim cr~1 and con- 

sequently 

0 = lim [ p j ( X  z) - (pj(X)) z ] = lira [pj,(X 2) - (pj,(X)) z ] 

= l i m p j , ( X  2) - (limp: (X)) 2 = p o ( X  2) - (po(X)) 2 = cr~o 
j"  ~co j"  ~co 

o-P0 For  Y we get analogously r = 0. But e}o = e~0 = 0 isin contradiction with 
the fact that e} + cr} > 0 for any p ~ S; hence, a ~xr as described must 
exist. 

As an illustration we proceed to examine what the above result may tell 
us about  a quite simple physical system--namely,  about a quantum- 
mechanical particle in one dimension, with momentum P and position Q. 
According to a well-known procedure (see, for instance, Messiah (1965), 
ch. V, 11), first of  all we substitute the observables P and Q (unbounded 
and with continuous spectra) by their approximate realisations P ~  and 
Q~  (bounded and with discrete spectra), constructed as follows. 

We can take P and Q as operators acting on adequate linear manifolds 
of  ~ Z ( R ) = - t h e  Hilbert space constructed, in the usual way, from the 
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set of all square (Lebesgue) integrable functions t: R ~ C.j" Let ~ and 
be two positive real numbers such that: (i) the ratio ~/~ is an even number 
k; (ii) the position and the momentum coordinates which lie outside the 
intervals [-~/2, ~/2] and [-rrh/~, ~rh/~], respectively, are beyond the reach 
of experimental measurability; (iii) a fraction of position and momentum 
coordinate amounting to ~ and rrh/~, respectively, is below the level of 
accuracy of experimental measurement; 

It is easy to verify that the family of functions (wherej = 0, ~1, +_2, :t:3 ... .  ) 

J/l  
v+(~:) = otherwise ~ v  

is a set of orthonormal elements of ~f2(R). Then, we take as 'approximate 
realisation' of the phase space of the system the (k + 1)-dimensional linear 
manifold H ~  c ~,a2(R) generated by the functions v~(~:) with j =  0, ~1, 
•  :k[(k/2)-  1], ~k/2. Now we define the 'approximate realisations' 
P ~  and Q~ of P and Q as the operators acting on H ~  such that: (i) the 
eigen~ctors of P~  are the functions 

~-'nexp(g2~jI(~)/~) if ~ c [-~/2, ~/2] 
/gj(~) 

otherwise 

from R into C, where j =  0, • i2 , . . . ,  • and I(s e) = the largest 
integer < ~:/~, the corresponding eigenvalues being given by 2 b. = (2rrh/st). j ;  
(ii) the eigenvectors of Q~ are the functions v/~:) for j = 0, -1 , . . . ,  ~:k/2, 
the corresponding eigenvalues being ~:i =J~. 

From the above definitions we have immediately that P~a and Q~a, as 
well as P and Q, are strongly incompatible. Hence, instead of studying the 
unbounded operators P and Q, we choose to consider their discrete and 
bonnded (although eventually With large norm) approximations Pa~ and 
Q~. To this last pair of operators we may apply theorem 3.1, contrariwise 
to what happens with the original pair, to which the theorem does not 
necessarily apply, due to the unboundedness of P and Q. 

Let us take ~ so large and ~ so small that Heisenberg's uncertainty 
principle applies to P~  and Q~ in the domain of experimental verifiability, 
without appreciable deviations. With unities adequately normalised, we 
may then state the usual uncertainty relation in the form crf, o-e.. >_ 1 
for all p in the set of states of the system with phase-space Hr 

We plot the variances c,f,~ and af2~ in a Cartesian graphic (Fig. l). 
Each point in the a v cr~cplane corresponds then to some set of states 
of the particle: under each state belonging to such a set, the measurement 
of P and Q would display the assigned variances. 

According to Heisenberg's principle, the physically admissible states 
belong to the sets represented by points on or above the hyperbola 
~r p crp - 1 .  On the other hand, theorem 3:t asserts that the sets of 

As usual, we will speak of the elements of ~ ( R )  as functions t : , R  ~ r although 
strictly speaking they are actually classes of such functions. 
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physically admissible states are represented by points on or above the 
straight line eg,o + e~i, = ~7~ooo.~, if  ~w~oo, ~ 2, this can be taken merely 
as a prediction weaker than Helsenberg s, 

An estimate Of the difference between the result of theorem 3,1 and 
Heisenberg's ~an be given by the difference of the areas covered by the 
points which, in each ease, might stand for sets of admissible states, A 
simple calculation (of. the Appendix) shows that the 'minimum deviation' 
between theorem 3,1 and Heisenberg's relation is obtained when 
~Te.,o ~= 2,3i, This correspond~ to a situation under which states which 
rmght be admissible according to He~senberg would not be so according 
to theorem 3,1 (and vice versa; ~ee Fig, 1),r 

3 

2 

1 

Figure i 

We proceed now to apply theorem 3.I to the operators c0rtesponding 
to angular vafiabies of a physical ~ystern, But, as the last remark in this 
section, iet us only note that the prooi ~ of that theorem can be made much 
simpler when H is finite-dimensional, as it~ the example H = H~e here 
diggusSed. 

it will be the object of future investigation to try to relate directly the 
dimet~sioriaiity of the Space 2q~ tO r/0:~p~a. 

In thi~ paper we will nat e0ir~trient On the aetuai distributi0n 0i" sets 0f (admissiNe) 
state~ in Ihe ~ eg~:plat~e, The stuay ot such a distfibati0fi is an impel,rant [sfoble~, 
to t~e a~r~r~aet~d i~'d~y attetnf4 t0 cheek e~13ei-imenially out" i-esuits~it seems h0wevei, 
tO inv01qe fathei, ~edioug egleuiations. We t~ight assun3e, as a W0fking hypothegig, that 
the 6{stf{r~u{ion of seig of states, aeeorditig {o the Variances 6t; P,~ arid Q~ ai,e t~-0ttghiy 
uriifOrm ~ ifi a sense tha~ the interested reader Will find easy t0 i.ender pf~se 0~ the 
e~f~eriment suggested ~t S~etiofl ~ Nr iastanee, it is clear that ifldeed we have a 'unifof~ 
di~t~f~b~tiOri ~ O~ [he sets of states decoi,difig to ihe variances tff et anti ~1~ 
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4. The Case of Angular Variables 
Let us consider a quantum particle moving along a circumference, with 

angular momentum/~ and position Os. In Schroedinger's formulation of  

Quantum Mechanics, L and Os are usually written as the operators 

= -ihff~ [t(~:)] and 0s[t(~:)] = ~:[t (sr L[t(~r 

acting on adequate linear manifolds of ~q~ As the functions t belonging 
to such manifolds must be periodic, with period 2zr, it follows then that 
there is no physical interpretation for the operator [L, 0 A. 

However,  it has been shown (cf. Judge, 1963; Judge & Lewis, 1963; 
Judge, 1964; and Bouten et al., 1965) that actually the observable position 
ought to be represented by the more adequate operator 0It (~:)] = Y(r [t (~)], 
where Y(~:) = ~:(mod.2rr) is a function taking values in [-~-,Tr]. We have 
thus that 

[L,O]=-ih(1-2rr~ 3[~:- (2n + I)~v]} 

By means of Schwartz's inequality, from the above comutation rule 
we can prove that 

_ _ _ _  O-P 

for any state p of the system; see the last reference just given. Numerical 
calculations have been carried out with this uncertainty relation, which 
was found to exhibit appreciable deviations from Heisenberg's (Schotsmans 
& van Leuven, 1965). Indeed, it is plain that 0 being limited, ~fcr~ > (h/2) 2 
is false (consider for instance the case when p is an eigenstate of Lt). 

We can bring our argument closer to the actual experimental situations 
(and, at the same time, simplify the above considerations) by restricting 
the range of ( to [-Tr, rr]. This implies taking ~2([--rr, rr]) as the space 
containing the wave functions of the system. Discrete and bounded 
'approximate realisations' of L and 0 can then be constructed, in a way 
which is formally equivalent to the case of linear momentum and position 
(see the previous section, putting ~ = 2,--r and ~ = an adequate segment of 
the orbit of the particle). The same method applied in Section 3 can be 
used, now, for comparing Judge's uncertainty relation with theorem 3.1. 
With the system of unities employed in Section 3, we have thus to examine 
the inequalities 

(YL p ~0 p > 1 (4.1) 
1 - ;~-~ ~ 0  p 

~C + ~0 p > ~TL0 (4.2) 
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The situation depicted in Fig. 2 must be compared with the one given 
in Fig. 1. The straight line cr[ + <s~ =: *?L0 which is tangent to the hyperbola 
we now consider--given by p p = CSlt7 0 (1 --  (3/'n'2) o ~ ) 2 - - i s  obtained for 

I ) ~L0=2 ~ +1  - ~  ~1 .48  

According to the calculations indicated in the Appendix, the 'minimum 
deviation' between inequalities (4.t) and (4.2), in the sense of Section 3, 
is obtained for ~?ro = 1.69. 

o P  
L 

0 

Figure  2 

o"0 

Supposing 1.69 to be the value of ~L0, we conclude that states which 
might be admissible according to Judge's inequality (4.1) would not be 
so according to inequality (4.2) (and vice versa, see Fig. 2). This situation 
for angular variables is analogous to the situation for linear momentum 
and position, examined in Section 3. 

From the standpoint of orthodox Quantum Mechanics, the existence of 
a lower bound for the sum of variances could thus imply in effects similar 
to the effects brought about by the existence of a superselection rule (see 
Jauch, 1968; Mackey, 1963). That  is to say, the elements of  any set of  
states represented by a point lying between the straight lines e} + crf, = nxr 
and the corresponding hyperbolas would not be physically realisable if 
X = P, Y = Q and "qeo > 2 (the case studied in Section 3, cf. Fig. 1) or if 
X -  L, u = 0 and ~/L0 > 1.48 (the case examined in this section, cf. Fig. 2). 
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It would be worthwhile to submit the above conclusion to an experimental 
test. This could be done by devising an experiment to make obvious the 
impossibility of realising states which would be forbidden under the present 
theory. We have a suggestion to put forward, concerning such an experi- 
mental arrangement, and it refers to particles with spin. 

Let us emphasise that our experiment, as described in the next section, 
is not merely a 'Gedanken experiment ' --for  it can and we hope it will be 
eventually carried out. 

We start by examining the general case of angular momentum and then 
proceed to the case of the spin 1/2. 

5. Uncertainty Relations and the Angular Momentum. The Particle 
with Spin 1/2 

Let L be the angular momentum of some physical system. By L~, Lz and 
L3 we will denote the self-adjoint linear operatorst  which stand for the 

components of  L according to some Cartesian frame. L 2 will be the self- 

adjoint operator t  representing the square L . L  of the angular momentum. 
Then, from the orthodox formalism of Quantum Mechanics we have that 
the following commutation rules must hold (in this section the unities are 
chosen such that h = 1). 

[Lh, L~]=iLk f o r h , • k = l , 2 , 3 a n d h v a j ,  hCk ,  j C k  
[LZ,Lj] = 0 f o r j  = 1, 2, 3 

We have besides that the eigenvalues of L z are # = n(n/2 + 1), where n 

runs over the non-negative integers. For  the value t' of L.L,  any one of 

the components of L has -g', - g '+  1, ..., f -  1, # as its admissible values. 

Actually, i fL .L  = some constant value g'0, the operators L~, L 2 and L3 can 
be considered as acting on a (2~o + 1) dimensional subspace of 5~2(R). 

Finally, supposing ~' ~ 0 we also know from the orthodox formalism that 
Lj and Lk have no common eigenvector i f j  r k. 

Let us assume then that our physical system has a constant non-null 

i f  square angular momentum . . Then, the components L1, Lz, L3 are 
(bounded) self-adjoint linear operators on a finite-dimensional Hilbert 
space. Furthermore, we can apply to such components the theorem 3.1 : 
for all states p of the system a n d j  r k we have cr[j + ef~ > r/LjL ~ > 0. 

If we try to get an 'uncertainty relation' on the product cr[F[~ by the 
orthodox method (see, for instance, Jauch (1968), 11.1), we obtain however 
nothing more besides the trivial inequality c~s c~g~ ~ 0. Thus, we have here 
a case in which the 'weak uncertainty principle' WUP of the Introduction 
brings forth some interesting new information, not derivable from the 
orthodox indeterminacy principles. 

,~ Acting on adequate linear manifolds of -o~(R). 
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It would be worthwhile t o  examine physical situations which, despite 
obeying the condition of WUP, under a first scrutiny would seem able to 
exhibit states violating some specific form of WUP. We proceed thus to 
analyse an experiment with spin, although the orthodox formalism of 
Quantum Mechanics tells us from the start that WUP must be obeyed then 
with 1 as the infimum for the sum of variances. The experiment would 
allow us to locate--by direct empirical verification--the value of ~L-L~. 

. . . .  J 

We might even have the effect described at the end of  Sectmn 4, 1.e. the 
ruling out of certain states which would be actually realisable according to 
orthodox quantum theory. 

In order to explain our experiment, let us start with some general con- 
siderations. The object of  the experiment would consist of a stream of 
particles with spin 1/2, in translation along some axis. The components 

of the spin S of any of such particles can be represented by the Pauli matrices 

0.1= (01 10), o.2= (~ - ~ )  and o'3= (10 d )  

We note that the operators o'1, 0.2, o'3~f obey the same commutation rules 

satisfied by the components of angular momentum and that S. S = constant 
�88 Thus, all the previous considerations about Ll, Z2,  L3 and o'Pzl, o'PL., 0.[3 
apply also to 0.1, 0"2, 0"3 and 0"g,, ~g2, Cg~'~ 

In what refers to the spin, a (pure) state p of a particle in the stream can 
be defined by a unit vector vp in the space ~7 2. Let us take the basis in r 2 
given by the eigenvectors (1,0) and (0,1) ofo. 3. Physically, this means taking 
a preferred direction in space, defined by o.3 and to be determined by an 
adequate magnetic field. 

Suppose now that the (pure spin) state of the particles is represented by 
the vector vp = c~(1,0)+ c~(1,0) where c~ and c~ are complex coefficients 
such that [c~ [2 + [c~12 = 1. Then" 

(A)--From the definition of variance we have o.g, = 1 - (2Real6r q)z 
and o.g2 = 1 - (2Real i .d~c~)  2 for any (pure spin) state p of the particles. 
Furthermore, from the condition lc, 12 + Ic~ 12 = 1 it follows that ]cr. c~[ ~< } 
and thus ~g, + cr~/> 1.~ 

(B)~From theorem 3.1, we have ~rg~ + crg2 ~ rto,o ~ for some ~7~,~2 > 0 
and any (pure spin) state p of the particles. 

From (A) and (B) some interesting facts do follow. First of all, (A) 
establishes a 'weak uncertainty relation' between o.1 and cr2, which is usually 
overlooked in the current discussions about spin 1/2. Second, we see that 
it makes sense to ask, what is the value of the constant "qo,o2, mentioned 

I" Act ing on  the complex Hilber t  space ~7 ~. 
Cf. Messiah (1965), ch. XII I ,  I. 

�82 Fo r  
~1  + ~ 2  ~ 2 - 4[(Real ct c* )2 + (Real i~'~. cj,) 2 ] 

= 2 - 4[(Real ?t e,~) ~ + ( I m a g ~  c~) 2 
2 - 4 1 c ~ . c , 1 2 > - - 2 - 1 = 1  
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in (B)? If it happens that % ~ ,  < 1, (B) would tell us nothing more than 
it is already said in (A). However, if it happens that ~7o~ o= > 1, new informa- 
tion would be brought about by (B). We are now ready to describe the 
experiment to determine which of these two alternatives does really occur. 

We consider a Stern-Gerlach apparatus SG~ which would split an 
- +  

unpolarised stream of neutrons--travelling along they-axis of an orthogonal 

frame x, y, z-- in  two beams located in the y, z-plane. The operators o,i, 
.-+ 

~2 and % are supposed to give the spin components according to the x, 
-4. 

and z, respectively. 
Let SGo be another Stern-Gerlach apparatus, similar to SG~ but suitably 

modified in order to send a stream of (completely) polarised neutrons along 

y. Such a beam of particles would then be fed into SG,, We assume, further- 
more, that the spin magnetic momentum of the polarised neutrons would 

be oriented according to (the positive sense of) some 7~ orthogonal to 3~'. 
Dehoting by (1,0), (0,1) the eigenvectors of % and by ~ the angle between 

z and z~ we have thus that our particles would enter SG~ in the (pure spin) 
state 

v,(~ = cos ~(1,0) + sen ~ (0, 1) 

As we would have 
ffP(=) + cr p(~) = 2 -- sen 2 

(71 i f 2  

it follows that if-%,o2 > 1, then some states vp(~) with ~ ~ ~-/2 would be 
forbidden by (B), despite being physically realisable according to the 
orthodox context of Quantum Mechanics. 

We believe that the occurrence of forbidden states may reveal itself by 
-~- . +  

the absence of output from SGI, when z ~ is tilted by rr/2 around y or, still, 
it may be revealed by disturbances in the intensities of the beams emerging 
from SG1, when a ~ rr/2. 

About the experimental conditions, we must take into account the 
interference of thermic fluctuations in the measurements. The energy of  
interaction spin-magnetic field for each neutron must be significantly 
greater than the thermic energy kT(here k stands for Boltzmann's constant). 
As the magnetic momentum of the neutron amounts to 10 -23 erg/oersted, 
given an external magnetic field of 104 oersted we have around 10 -'9 ergs 
for the energy of interaction spin-external field. Thus, we would suggest: 
(a) taking into SGI thermal neutrons (for example, with energy around 
10 -2 eV); (b) maintaining an adequate part of the experimental arrangement 
under a temperature significantly below 10 -~ ~ 

Finally, let A t be the time of transit of the particles between SGo and 
SG~. Considering the question of the collapse of the neutrons into a polarised 

t c~ is supposed to be counted from z, in the positive sense defined by the system x, y, z. 
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state, we deduce  tha t  it  would  be convenient  to  m a k e  d t >  10 -13. A b o u t  the 
t ime o f  t rans i t  we note  however  that  if  Bohm and  Bub 's  ' h idden  var iables '  
theory  is val id,  then ' u n o r t h o d o x '  results  may  eventual ly  arise, depend ing  
on the value o f  A t - - c f .  Bohm & Bub, 1966, especial ly Section 7, and  
Tutsch,  1968. 
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A P P E N D I X  

Est imate  o f  the 'minimum deviation' between x . y  = 1 and x + y = 
(cf. Section 3) 

W e  in tend to es t imate  the area  A0)) which is given by the shadowed 
sect ion o f  Fig.  3 (if  ~/< 2) or  Fig. 4 (if ~ > 2). 

Y 

x §  = q 

Figure 3 

\I I [ I 1 1 | 1 1 . . . ~  

\ x 
x + y  = q 

Figure 4 

Suppos ing  tha t  x and y take (alt the) values in some interval [0,~/],? an 
e lementa ry  ca lcula t ion  gives us, i f  0 < -q < 2, 

7~ 2 

A(~7) = 1 - ~-  + 2 log 

t Here ~/is taken sufficiently large. 
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and i f 2  < 7 =< #, 

~q2 2V/# 
A(r/) = - ~ -  + ~TV'(-q 2 - 4) + 4 log  7 + V'(7 z - 4) + 1 

The  funct ion A(~?): [0,~7]--+R defined by the expressions above is 
obviously cont inuous  and decreasing at least up to ~ = 2. It is also easily 
seen that  A(7) must  have a min imum for  ~/m~n ~ (2,~/]. Posing -q = 2cosh0  
a good approx imat ion  for  the increment AA of  A, when 7 is varied by At/, 
is given by 

A A  = A(7  + AT) - A(7)  ~ ~/[2(e ~ - e-~ 2] - 2~/[(~ - e~ 2 + e -z~ ~ 

= (e 0 - 3e-0) A~/ 

Mak ing  A 7 -+ 0, we get then dA/d~ = e ~  3e- ~ and we may  deduce 
tha t  A(~) at tains its m in imum when e ~ 3e -~ An approx imate  Solution 
of  this equat ion  is 0 ~ 0.55, for  which 7 ~ 2.31. 

O f  course, we do not  claim that  the last a rguments  above  are mathe-  
mat ical ly  f lawless- -but  it can be easily verified that  indeed ~ ~ 2.31 is a 
poin t  o f  m i n i m u m  for  A(7 ). Tha t  such min imum is unique seems to be 
a safe guess . . . .  

Est imate  o f  the 'minimum deviation" between x y 1 and x + y = ~q 

(o f  Section 3) 

Let  us put  3/~r2 ~ y;  the point  at which the straight line x + y  = 7  is 
tangent  to the hyperbola  xy/(1 - 7x) 2 = 1 is easily determined as x = 0.956 
and y = 0.526. The  value of  T for  the tangent  line is 1.482. As in the previous 
case, we look for  a value o f ~ / >  1-482 which would 'minimise the deviat ions '  
between the previsions given by our  two equations.  We can safely assume 
that  such value of  7 is < 1/y. 

For  1.482 < 7 < 1/~,, the area A(,?) to be minimised is given by 

X I  

A(7) = A0 + .  a x - ,  (7-x)d  + ,  (7-x)d  
J x d J 

x 0 Xo x 1 

~i2(1 -- yX)2j 1j ~y(1 - 'x)2 r / X -  X- (- 
- a x  + d x  - .J ( .q - x ) d x  

X I X 2 X 2  

where x0 > 0 is an arbi t rary  constant  close to 0, introduced to avoid the 
divergence of  the first integral. The constant  Ao depends on x0 and on 
the m a x i m u m  value taken  by the variable y (which is supposed bounded,  
cf. Section 3). The  coordinates  x~ and x2 are the abscissas of  the points  
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where  the s t ra ight  line y = ' 9 -  x cuts the hype rbo la  y = (1 - x ) 2 / x ,  res- 
pect ively 

(27 + '9) :F ~/[(2~, + '9)2 _ 4(~,~ + 1)1 
2(~v 2 + t)  

Subst i tu t ing  the integrals  above  by their  a lgebra ic  expressions and 
der iving the resul t  in re la t ion to '9, we find af ter  some simplif icat ions that  

dA 
= 2"807'94 + 8.277"93 - 21.353'92 - 38-912-q + 63.941 

Two of  the  roots  o f  this equa t ion  are negative and one is <1.482. The  
remain ing  one is the value we search for, 1.69. 
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