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Abstract

A suitable weak topology is considered on the Hilbert phase space of a quantum-
mechanical system. It is then shown that if two bounded observables of the system have
no common eigenvector, the sum of their variances in any state is always greater than
some positive constant. Consequences of this result on some cobservables of simple
physical systems are examined. First of all, the case of the position and momentum of
the elementary particle in one dimension is studied and a comparation with Heisenberg’s
indeterminacy principleis carried out. Then, the case of angular variables is also examined,
with special emphasis on spin 1/2. An experiment with neutrons is finally suggested and
analysed with the help of the theory developed.

1. Introduction

Given two observables X, Y canonically related-——i.e. obeying the
commutation rule [X, Y] = /i—Heisenberg’s uncertainty principle asserts
that the product of their variances is always greater than or equal to (4/2)%.
Our aim, in the present paper, is to deal with a related sort of ‘weak un-
certainty principle’: (WUP) if two bounded observables X and ¥ have no
common eigenstate, then the sum of their variances is always greater than
some positive constant. This is proved as the theorem 3.1, at the beginning
of Section 3. Some preliminary mathematical tools, needed for the proof
and essentially of a topological nature, are developed in Section 2.

As it can be verified from the considerations which will follow, WUP
seems worthy of attention in its own. Indeed, it can be applied not only to
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pairs of observables canonically related} but also to observables which
are not canonically related—thus, to which Heisenberg’s relation does not
apply.t Furthermore, it may eventually lead to quite a variety of technical
results—an example of which is found in Alvim (1970).

But there is still other reasons for considering WUP. Indeed, when
studying the lattice-theoretical foundations of (non-Relativistic) Quantum
Mechanics,§ two species of pairs of observables are naturally singled out.
One species is formed by the pairs whose components do commute and the
other species by those whose components have nc common eigenstates.
Now, WUP applies exactly to this last kind of pairs. The importance of
this fact is better understood if we heed von Neumann’s comments on
Bohr’s 1927 ‘complementarity lecture’ (as described in Jammer (1966),
p. 354).

Furthermore, WUP is a purely qualitative assertion, in the sense that its
premise depends only on a ‘non-numerical’ property of X and Y. As a
consequence of such a property, it follows the existence of a lower bound
for the sum of the variances of X and Y. This situation must be compared
with the orthodox quantum mechanical context, where Heisenberg’s
uncertainty relation is deduced from a quantitative law (i.e. [X, Y]=2h).
Heisenberg saw in his indeterminacy principle the ‘direct intuitive inter-
pretation’ of the canonical commutation rules (cf. Jammer (1966), p. 328).
On the other hand, as noted by Born,§ the canonical commutation rules
are the equations which introduce Planck’s constant in Quantum Mech-
anics. From all this and assuming a quite unorthodox point of view, we
might consider WUP as a step—yet rather primitive—towards introducing
# in (non-Relativistic) Quantum Mechanics through intuitive, elementary
and qualitative principles.

Finally, we remark that very often we will call ‘the orthodox context of
Quantum Mechanics’ today’s Quantum-Mechanical formalism withour
WUP. It must be emphasised, however, that WUP is deduced entirely
within the orthodox Hilbert-space formalism of (non-Relativistic)
Quantum-Mechanics. Furthermore, it would still be valid even if some
parts of such a formalism fail to hold. Thus, in Sections 3 to 5 we con-
template the possibility that some operators, which in the orthodox context
are supposed to obey the canonical commutation rules, actually may not
do sol| but still obey WUP. This supposition poses itself as a natural object
of study, due to the cleavage of the pairs of ‘lattice-theoretical observables’
into the two species we have indicated above.

+ Cf. Section 3; in Section 4 we examine a closely related situation.

1 Cf. Section 5.

§ We must add here: ‘such a study being carried out from the standpoint of an
atomistic-operational heuristics’. The operational standpoint was developed in Alvim
{1969).

€ Cf. Born et al. (1926), ch. 1, comments on equation (5). See also Jammer (1966},
p. 211.

il Or, obey the canonical commutation rules but have the variances in their measure-
ments acted upon by some kind of yet unknown interference.
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2. Weak Convergence on the Set of States of a Quantum-Mechanical
System

Let H be a complex separable Hilbert space and B the real vector space
of bounded linear self-adjoint operators on A. Let S be the set of all linear
functionals p: B —> R which are of the form

p(X) = 2 ALXv 50,0

where the v, are normalised elements of A and the )\ real coefficients such
that 0 A<, 2/ ,A = 1.

Definition 2.1—By the weak topology of B we will understand the weakest
topology on B under which the linear functionals p € S are continuous.
The space B, endowed with this topology, is then a topological vector
space which will be denoted henceforward by wh.

We are specially interested in the dual wB of wB; that is to say, in the
real vector space of continuous linear mappings from wB into R. By
definition 2.1 we have S < wB.

Definition 2.2—By the weak topology of wB we will understand the
weakest topology on wB under which the linear functionals - (X): f — f (X),
from wB into R, are continuous for every X € B. The space wB, endowed
with this topology, is then a topological vector space which will be denoted
henceforward by wwa.

The weak topology of wB is Hausdorff and locally convex; a basis of
neighbourhoods for fy € wwB s given by the sets V( fy, N,8) ={ f: fe wwhB,
| F(X)—fofX)| < & for all X e N}—where N runs over all the finite sets
of elements of wB and 6 runs over the positive reals. A sequence

1< wwB converges weakly (to the element fewwB) if and only if
lxmj;(X) = f(X) for every X e wB.
Now, let us recall that if X € B, the norm of X is defined as

1 X = sup{|<Xv, X032 |: ve H, (v, v) = 1}
By its turn, for f € wB the norm of f is defined as
A =sup{l/(X)|: Xe B, | X| =1}
We have a result similar to Alaoglu’s theorem:

Theorem 2.3—The unity ball @ ={f:fe wwB, WAl £1} of wwB is
compact.

Proof—See, for instance, Dunford & Schwartz (1958), v. 4.1-v. 4.2,
30*
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But besides being compact when endowed with its relative topology as
a subset of wwh, the unity ball is then also a metrisable topological space.
In order to show this, we need some auxiliary notation and results.

Let A4 be the complex vector space of all linear bounded transformations
in H and C the subspace of 4 formed by all the compact linear trans-
formations in H. By wd we understand 4 endowed with the weakest
topology under which the linear functionals X — >% | (Xv,, w ) from 4
mto C—where {v,}, {w,} are any sequences of elements of H such that

1 (v v+ < >) < w—are all continuous.t The dual of w4 wiil
be denoted wA (We wxll not need to define any topology on it; wA will be
considered merely as a complex vector space).

The norm || X|| of an element X & A being defined in the usual way, we
denote by nC the space C endowed with the uniform operator topology.
In the dual nC of nC we consider also the usual norm topology—the
resuiting topological vector space being denoted by nnC and its dual by
nnC.

It is known (see, for instance, Dixmier (1950), p. 394) that there exists
an isometric isomorphism 6: nrC — 4 such that, if & is the canonical
imbedding of nC into nnC, then §(Z(X)) = X, VX e nC. Any f'e nC may
be taken as the restriction to C of the linear functional £ over 4 whose
action is given by the formula f(X)=0"(X).(f), VX € 4. It happens
furthermore that the elements of wA are exactly the ‘extensions’ f of the
functionals f e nC, constructed as just described (Dixmier {1950), p. 398).

We also know] that nC contains a dense countable subset {U}. Let us
suppose now that fo(U ) =0 for all U, and some fo € WA. Butfo( =0
implies fo(U )=0 l(U) (fo=0 dnd as 0(EU)=U,, it follows that
E(U,) (fo)- fO(U) 0 for all U, From this we can deduce that f; is
then the null element of nC and, going back to fq(X) =071 X).( fy), we
finally conclude that f; is also the null element of wA.

Taking into account the above result, we proceed to prove the

Lemma 2.4—There is a countable set {X,} < wB _s_g_c_:h that if fe wB and
f(X,)=0forall X, then fis the null functional of wA.

Proof—From the above considerations, it follows that there exists a
countable set {U,} < wd such that if f; e wA and fo(U,) =0 for all U,
then fy is the null functional of wA. Let us write each X e w4 with the help
of self-adjoint transformations, in the usual way: X=X, +/X, with
X,, X, ewB. Now suppose that fe wB and S, = =f(U,,) =0 for all
the self-adjoint components U, ;, Uy, of the transformations U,. But the
functional f defined by the equation f(X)=f(X)) + ¢f (X3) belongs to

1 This topology corresponds to the ‘topologie ultrafaible’ defined in Dixmier (1953)
and to the ‘topologie o(%#,7 'y of }‘Di‘xmler (1950).
1 Dixmier (1950), p. 392, proposition 4.
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wA.t Hence, as f(U)=f(U)+if (U;;)=0+0=0 for all 4, f is the
null element of wA—and its restriction f to wB turns out to be the null
element of wB.

Lemma 2.5—Let {X} be the same set described in the previous lemma
and X ;= X {| X, Then
(f—2). X
d(f,8)= . L
Z 2 1+ [(F-) X))

defines a metric for ©; the corresponding (metric) topology being weaker
or equal to the relative topology of © as a subset of wwB.
Proof—It is easily verified that d( £, g) is indeed a metric on ®; lemma 2.4

being used to show that d(f,g) =0 <> f=g. The second assertion of the
lemma follows from the fact that each open ball

| S (f-f X 5
{f-f €0, ;2 27 A1~ }

of centre f; and radius & contains a neighbourhood

V(for AX3c1,2,..np 012) = {f e, [f(X)—~fuX,)| <82 for all
X
of f;, in the relative topology of ©, where #; is determined by the condition
1/@27 — 1) < /2.
We may now assert the

Theorem 2.6—The unity ball ®, endowed with its relative topology as

a subset of wwB, is a compact metrisable topological space (which hence-
forward will be denoted by t®).

" Proof—That © is a compact subset of wwB was established in theorem
2.3. But a Hausdorff topology over a set, weaker than a compact topology
over the same set, is necessarily equal to the compact topology.i Thus,
the metric topology defined on © by lemma 2.5 is indeed equal to the
relative topology of © as a subset of wwB.

1 This may be shown as follows. Let 4 be a closed set of complex numbers. It is easily
verified that the weak topology of B is equal to the relative topology of B as a subset
of wA. From the continuity of the functionals X — <{Xv, v) from w4 into €, it follows
also that B= N {X: {(Xv, v) € R} is closed in wA. By the continuity of fin wB, we have

veH
that the sets &'| = {X;: f(X1) is the real part of some A€ 4} and .93”2 ={X,: f(X;)is the
imaginary part of some A € 4} are closed in wB and thus closed in w4. Let X* be the
adjomt transformation of X € wA. But then, by the continuity of the mapping X — X*
in w4 (see Dixmier (1950), p. 406), we deduce that the sets #; = {¥: {Y + Y*) e X;}
and @, ={Y: (@2)(¥* - Y)eXZ,} are closed in wl. We may conclude, thus, that
F D =%, N¥, is a closed subset of wA.
1 See, for instance, Dunford & Schwartz (1958), i. 5.8.
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We intend to use the above theorem to establish that S, endowed with

its relative topology as a subset of wwB, is a metrisable compact topological
space, But, in order to do this, we need the following preliminary results:

Lemma 2.7—1et D be the set of all orthogonal projections on the closed
linear subspaces of H. Then, if {p;} = S is a sequence converging weakly
to f€ wwhB, the restriction f/D of f to D coincides with the restriction of
some p € S to the same set.

Proof—For the case in which dim H £ 2, we can easily construct directly
the p whose existence is asserted. Thus, we may assume that dimH = 3.
Let p,/p be the restriction of p, to D, X° the projection on the null-subspace
of H, X! the identity operator on H. Each p;/p, defines a measure on the
set of closed manifolds of H, in the sense of Gleason (1957). Obviously,
flp(X®) =0and /(X)) =1, with 0 < f/5(X) = 1 for any X € D. To show
that f/,, also defines a Gleason measure, it must be proved then that f/, is
countably additive. The proof that follows can be found in Gudder (1965),
theorem 7.6—it is displayed here for the sake of completeness. Let {X }
be a disjoint sequence of elements of D} and & < D the smallest Boolean
o-algebra of projections containing {X,}. By the Loomis representation
theorem (see, for instance, Varadarajan (1968), theorem 1.3), there exists
a set M, a o-algebra .# of subsets of M, and a c-homomorphism 4 from
M onto Z'. We have that each p, induces a measure j, on .# defined by
PAm) = p | p(hom)), Va2 € M. Defining fy=1 /D(h(m)) we have limp {»)
= ilmpJ/D(h(m)) = f|p(h(sm)) = f (), Von € M. Thus, {j} is a sequence of
countably additive scalar functions on the o-field .#, such that limp (o)
= f (#:) for all sz € .#. By a theorem of Nikodyn (see Dunford & Schwartz
(1958), theorem iii. 7.4), it follows then that f is countably additive on 4.
Let us write h(se,) = X, and &, = sy, &1 = my — my, €5 = my — (a2 U o)),

.; obvicusly ¢, ﬂ £y= q$ for £ ¢ and h(t;) = X, for all ;. Hence we have

7103 %) =11 S W) ~11a | {U )| -7 (U 4) = 57¢) =S 11002
P4 Fd
=2 f1o(X)
7
We conclude, thus, that f/j, is a countably additive non-negative real valued
function on D—or, equivalently, on the set of all closed linear manifolds

of H. By Gleason’s theorem (loc. cit.), we may then assert that f7, is the
restriction to D of some functional belonging to S.

Lemma 2.8—Let fe wwB be a functional such that there exists peS
for which f/p, = p. Then, f=p.

Proof (cf. Gudder (1965), theorem 1.4)—Given any X e B and any
& > 0, we know that there exists a linear combination 2 ;.; £,X; of elements

t That is to say, X;. X = X for Xy, Xr € {X }and 5" # ;.
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X ;e D, with real coefficients £, such that | X — 3%, £, X ;li < 8.7 Thus,
as for any X € B we have

P00 -/ (301 3 |00 - ($, 2,,)

ol o0) (.60

= “X aj;zzx &%

. 111

f (;1 ¢ X,) — (X él £,X,— XH

we see that |p(X) — f (X)]| is smaller than any arbitrary positive number—
that is to say, f(X) = p(X) for any X € B.
We are now ready to prove the

Theorem 2.9—S8, endowed with its relative topology as a subset of wwB,
is a metrisable compact topological space.

Proof—It is easily verified that S < @ thus, by showing that S is closed
in t® sch a result will follow immediately from theorem 2.6. Let us show
then that if {p } < §'is a sequence converging (weakly) to fe ©, then f=p
for some p € 5.1 But this is an immediate consequence of lemmas 2.7 and
2.8.

Corollary 2.10—Any sequehce {p;} = S has a weakly convergent sub-
sequence—i.e. a subsequence {p -} such that there exists a p € S for which
p(X) = p(X), VX €B.

Proof—The corollary follows immediately from theorem 2.9, by standard
topological results (see, for instance, Dunford & Schwartz (1958), theorem
1.6.13).

We proceed now to apply corollary 2.10 to the investigation of some
‘weak uncertainty principles’ which may arise in the context of Quantum
Theory.

3. Uncertainty Bounds: The Sum and the Product of Variances. The
Case of Linear Momentum and Position

In all that follows we assume Schroedinger’s formulation of Quantum
Mechanics, as usually given in terms of Hilbert-space theory. According
to it, pure states and observables correspond, respectively, to unit vectors
and self-adjoint operators on the complex separable Hilbert space H of
‘wave functions’ of the physical system. The pure and the mixed states of

T See, for instance, Riesz & Sz. Nagy (1955), Section 107.
I As wwB is a Hausdorff topological space and O is compact, it follows that O is a
cigs_ed subset of wwB and that a sequence {p,} < O, if it converges in the topologies of

wwB or t O, may converge only to an element of ©. (Of course, for a sequence of elements
of ©, convergence according to the topology of 1 O is equivalent to convergence according
to the topology of wwB.)
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the physical system (with phase-space H) are exactly the functionals p of
the set S introduced in Section 2.

Let us say that an observable X is exactly measured in the state p if its
variance or dispersion in p—i.e. the quantity o% = p(X?)— (p(X))*——is
null. Tt is easily verified that an observable may be exactly measured only
in pure states. Moreover, since von Neumann’s studies on the subject (see
von Neumann (1932), iii.3) it is well known that X is exactly measured in
the pure state p = (-v,v) if and only if v € H is a (normalised) eigenvector
of X.

Now, let us suppose X and Y two bounded self-adjoint operators on H.
We say that X and Y are strongly incompatible, and write X<+ Y, if there
is no element in H which is an eigenvector of both X and Y.

From our previous remarks, we have that X«+» ¥ implies that there is
no state in which both X and Y can be exactly measured. But nothing
seems to prevent us from finding states in S under which the variances of
both X and Y could be as small as we please. That the situation is not so
is the outcome of

Theorem 3.1—Let X and Y be bounded observables (i.e. bounded self-
adjoint operators) on the complex separable Hilbert space H. Then, if
X &> Y there exists a positive real constant 7xy such that o% + 0§ = nxy
for any state p € S.

Proof—As noted above, we have necessarily o% -+ ol>0 for any
state p. Suppose by absurd that no 7xy as described does exist. We would
have then a sequence { p;} of states for which lim (c% + o3’) = 0; by corollary

Joo
2.10 we also would have a subsequence {p;} of {p;} converging weakly to
some py € S. Now, from lim(c% + o) =0 we get 0=Ilimoy and con-

Jjow Jowm

sequently
0= I,-iﬁ, [PAX?) — (pX))*] = thfo [pA(X?) — (p(X))]

= }_}'inpjf(X )~ (}jﬂm (X)?* = po(X?) = (po(X))? = o}
For Y we get analogously o§° = 0. But o} = oo = Qisin contradiction with
the fact that o% + 0% >0 for any p €.S; hence, a nxy as described must
exist.

As an iflustration we proceed to examine what the above result may tell
us about a quite simple physical system—namely, about a quantum-
mechanical particle in one dimension, with momentum P and position Q.
According to a well-known procedure (see, for instance, Messiah (1965),
ch. V, 11), first of all we substitute the observables P and @ (unbounded
and with continuous spectra) by their approximate realisations Pg; and
Q;: (bounded and with discrete spectra), constructed as follows.

We can take P and O as operators acting on adequate linear manifolds
of #?(R) = the Hilbert space constructed, in the usual way, from the
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set of all square (Lebesgue) integrable functions ¢: R — €. Let £ and £
be two positive real numbers such that: (i) the ratio £/ is an even number
k; (ii) the position and the momentum coordinates which lie outside the
intervals [—£/2, £/2] and [—=hi[&, =h[E], respectively, are beyond the reach
of experimental measurability; (iii) a fraction of posmon and momentum
coordinate amounting to & and wh/E, respectively, is below the level of
accuracy of experimental measurement.

Itis easy to verify that the family of functions (wherej = 0, £1, 42, £3,...)

é vz E S 1€ < |+ D E
v() = otherwise

is a set of orthonormal elements of #%(R). Then, we take as ‘approximate
realisation’ of the phase space of the system the {k -+ 1)-dimensional linear
manifold Hg < Z2(R) generated by the functions v,(§) with j=0, +I,
+2,..., £[(k/2) — 1], +k/2. Now we define the ‘approximate realisations’
Py; and Qg of P and Q as the operators acting on Hp such that: (i) the
eigenvectors of Py are the functions

(&) - {5 exp (028198 if ¢ e [-€]2, E2]

otherwise
from R into ¢, where j=0, 41, +2,..., +k/2 and I(§) = the largest
integer £ £/¢, the corresponding eigenvalues being given by A; = (27rh/§) g
(ii) the eigenvectors of Qg are the functions v,(§) for j = 0, +1,..., +k/2,
the corresponding eigenvalues being &, = jE.

From the above definitions we have immediately that Py; and Qg, as
well as P and @, are strongly incompatible. Hence, instead of studying the
unbounded operators P and @, we choose to consider their discrete and
bounded (although eventually Wwith large norm) approximations Pg and
Q;:. To this last pair of operators we may apply theorem 3.1, contrariwise
to what happens with the original pair, to which the theorem does not
necessarily apply, due to the unboundedness of P and Q.

Let us take € so large and & so small that Heisenberg’s uncertainty
principle applies to Pz and Q;; in the domain of experimental verifiability,
without appreciable deviations. With unities adequatr-'iy normalised, we
may then state the usual uncertainty relation in the form o}, ,0p,. 21,
for all p in the set of states of the system with phase-space /.

We plot the variances o}, and o}, in a Cartesian graph:c (Fig. 1).
Each point in the o}, of,, pldne corrcsponds then to some set of states
of the particle: under each state belongmg to such a set, the measurement
of P and Q would display the assigned variances.

According to Heisenberg’s principle, the physically admissible states
belong to the sets represented by points on or above the hyperbola
0B, 0%.s=1. On the other hand, theorem 3.1 asserts that the sets of

+ As usual, we will speak of the elements of #?(R) as functions 7: R — ¢, although
strictly speaking they are actually classes of such functions.
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physically admissible states are represented by points on ot above the
straight lie of,, + 0%, = Npy00 IF Tpgsy = £ 2, this can be taken merely
as a prediction Wweaker than Heisenberg’s.

An estimate of the difference between the result of theorem 3.1 and
Heiseniberg’s can be given by the difference of the areas covered by the
poirits which, in each case, might stand for sets of admissible states. A
simple caleulation (cf. the Appendix) shows that the ‘minimum deviation’
between theorem 3.1 and Helsenberg § relation 1s obtained when
pgs0q: = 231, This corresponds to a situation under which states which
mlgbt “be admissible accordmg to Heisenberg would not be so according
to theorem 3.1 (and vice versa; see Fig. 1).1

¥

TP

Figure 1

We proceed now to apply theorem 3.1 fo the operators correspondmg
to angulaf variables of a physical system. But; as the last remark in this
section, let us only néte that the proof of that theorem can be made much
siipler when H is finite-dimensional, as ifi the example H = Hy, here
discussed. ] ‘

it will be the object of future investigation to try to relate directly the
dimenisionality of the space Hy; 16 7g.. 5,

TIn this paper we will not eotiment on the detual distributisn of sets of (admissible)
states ini fhe 68 sgs nqgg splate. The study of suehi a distribution is an important problem,
to be appréaehed it aily dtiemift 16 chieck experimentally our résulis—it seéins however
to invelve rather tedlous caleulations. We might assumie, 4s a working hypothesns that
the dxstnﬁuﬂon of sets of states aeording to the variances of }’“ and Q! § are roughly
urifofin’; i 4 sefise that the interested readeér will find easy to render préeise (in the
exfienment suggested at Sectiof 5 for instance, it is clear that indeed we have a ‘uniforin
disteibution’ of the sels of stites dscordifig to the variances of ¢4 and o3}
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4. The Case of Angular Variables
Let us consider a quantum particle moving along a circumference, with
angular momentum L and position 6. In Schroedinger’s formulation of
Quantum Mechanics, L and 0, are usually written as the operators

L@ =@ and  8[@)= (O]
acting on adequate linear manifolds of #%(R). As the functions ¢ belonging
to such manifolds must be periodic, with period 2, it follows then that
there is no physical interpretation for the operator [L, 8,].

However, it has been shown (cf. Judge, 1963; Judge & Lewis, 1963;
Judge, 1964; and Bouten et al., 1965) that actually the observable position
ought to be represented by the more adequate operator 8{t(§)] = Y (£)[1(&)],
where Y(£) = &(mod.2x) is a function taking values in [—m,7]. We have
thus that

L, 0] = —ih {1 - _i S[E — (2n + I)w]}

By means of Schwartz’s inequality, from the above comutation rule
we can prove that
o

for any state p of the system; see the last reference just given. Numerical
calculations have been carried out with this uncertainty relation, which
was found to exhibit appreciable deviations from Heisenberg’s (Schotsmans
& van Leuven, 1965). Indeed, it is plain that 6 being limited, o o3 = (h/2)?
is false (consider for instance the case when p is an eigenstate of L!).

We can bring our argument closer to the actual experimental situations
(and, at the same time, simplify the above considerations) by restricting
the range of ¢ to {—m,w]. This implies taking FX[-=,#]) as the space
containing the wave functions of the system. Discrete and bounded
‘approximate realisations’ of L and 6 can then be constructed, in a way
which is formally equivalent to the case of linear momentum and position
(see the previous section, putting & = 27 and & = an adequate segment of
the orbit of the particle). The same method applied in Section 3 can be
used, now, for comparing Judge’s uncertainty relation with theorem 3.1.
With the system of unities employed in Section 3, we have thus to examine
the inequalities

o.f op”

3 2
(1 — ;}‘2‘ Uep)

"+ 0" 2 Mg 4.2)

v

1 “.n
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The situation depicted in Fig. 2 must be compared with the one given
in Fig. 1. The straight line o} + o} == 7,4 which is tangent to the hyperbola
we now consider—given by o of = (1 — (3/72) g§)>—is obtained for

s -2

According to the calculations indicated in the Appendix, the ‘minimum
deviation’ between inequalities (4.1) and (4.2), in the sense of Section 3,
is obtained for 7,9 = 1-69.

p
‘L

l \ N
1

0 T 1.69 2 3

Figure 2

Supposing 169 to be the value of 7,4, we conclude that states which
might be admissible according to Judge’s inequality (4.1) would not be
so according to inequality (4.2) (and vice versa, see Fig. 2). This situation
for angular variables is analogous to the situation for linear momentum
and position, examined in Section 3.

From the standpoint of orthodox Quantum Mechanics, the existence of
a lower bound for the sum of variances could thus imply in effects similar
to the effects brought about by the existence of a superselection rule (see
Jauch, 1968; Mackey, 1963). That is to say, the elements of any set of
states represented by a point lying between the straight lines o% + of = nyy
and the corresponding hyperbolas would not be physically realisable if
X =P, Y= and 1pq > 2 (the case studied in Section 3, cf. Fig. 1) or if
X=L, Y=~0and n.4> 1-48 (the case examined in this section, cf. Fig. 2).
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It would be worthwhile to submit the above conclusion to an experimental
test. This could be done by devising an experiment to make obvious the
impossibility of realising states which would be forbidden under the present
theory. We have a suggestion to put forward, concerning such an experi-
mental arrangement, and it refers to particles with spin.

Let us emphasise that our experiment, as described in the next section,
is not merely a ‘Gedanken experiment’—for it can and we hope it will be
eventually carried out.

We start by examining the general case of angular momentum and then
proceed to the case of the spin 1/2.

5. Uncertainty Relations and the Angular Momentum. The Particle
with Spin 1/2

Let I be the angular momentum of some physical system. By L,, L, and
L, we will denote the self-adjoint linear operatorst which stand for the

components of L according to some Cartesian frame. L? will be the self-

adjoint operatort representing the square L.L of the angular momentum,
Then, from the orthodox formalism of Quantum Mechanics we have that
the following commutation rules must hold (in this section the unities are
chosen such that 7 = 1).

WLy, Li}=¢L, forh,jk=1,2,3andh+#jh#k,j#k
{L?,L;}=0 forj=1,2,3
We have besides that the eigenvalues of L? are £ = n(n/2 + 1), where n
runs over the non-negative integers. For the value ¢ of L .Z, any one of
the components of L has £, £+ 1, ..., — 1, as its admissible values.

Actually, if L.L = some constant value ¢y, the operators Ly, L, and L, can
be considered as acting on a (2¢; + 1) dimensional subspace of .#2(R).
Finally, supposing £ + 0 we also know from the orthodox formalism that
L; and L, have no common eigenvector if j # k.
Let us assume then that our physical system has a constant non-null

square angular momentum L.L Then, the components L;, L,, L; are
{bounded) self-adjoint linear operators on a finite-dimensional Hilbert
space. Furthermore, we can apply to such components the theorem 3.1:
for all states p of the system and j # k we have of + 0%, 2., >0.

If we try to get an ‘uncertainty relation’ on the product of of, by the
orthodox method (see, for instance, Jauch (1968), 11.1), we obtain however
nothing more besides the trivial inequality of .o% 2 0. Thus, we have here
a case in which the ‘weak uncertainty principle’ WUP of the Introduction
brings forth some interesting new information, not derivable from the
orthodox indeterminacy principles.

+ Acting on adequate linear manifolds of #*(R).
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It would be worthwhile to examine physical situations which, despite
obeying the condition of WUP, under a first scrutiny would seem able to
exhibit states violating some specific form of WUP. We proceed thus to
analyse an experiment with spin, although the orthodox formalism of
Quantum Mechanics tells us from the start that WUP must be obeyed then
with 1 as the infimum for the sum of variances. The experiment would
allow us to locate—Dby direct empirical verification—the value of 7, .
We might even have the effect described at the end of Section 4, i.e. the
ruling out of certain states which would be actually realisable according to
orthodox quantum theory.

In order to explain our experiment, let us start with some general con-
siderations. The object of the experiment would consist of a stream of
particles with spin 1/2, in translation along some axis. The components

of the spin Sof any of such particles can be represented by the Pauli matrices

01 0 — 1 0
1=\ o) TN 0) and o=y 4

We note that the operators oy, o,, 03T obey the same commutation rules

satisfied by the components of angular momentum and that .8 = constant
#. Thus, all the previous considerations about L,, L, L; and o} , of, of,
apply also to oy, 03, 03 and o}, 0f , 08 .1

In what refers to the spin, a (pure) state p of a particle in the stream can
be defined by a unit vector v, in the space €2. Let us take the basis in €2
given by the eigenvectors (1,0) and (0, 1) of o;. Physically, this means taking
a preferred direction in space, defined by ¢, and to be determined by an
adequate magnetic field.

Suppose now that the (pure spin) state of the particles is represented by
the vector v, = ¢,(1,0) + ¢|(1,0) where ¢, and ¢, are complex coefficients
such that ¢y |* + |¢, |* = 1. Then:

(A)—From the definition of variance we have ¢}, =1 — (2Realé, ¢)?
and of =1— (2Reali.¢;c,)* for any (pure spin) state p of the particles.
Furthermore, from the condition |¢;|* + |c, |* = L it follows that |¢;.¢, | < }
and thus of + 0% > 1.9

(B)—From theorem 3.1, we have o + 0}, = 1,,,, for some 7, , 20
and any (pure spin) state p of the particles.

From (A) and (B) some interesting facts do follow. First of all, {(A)
establishes a ‘weak uncertainty relation’ between o, and o,, which is usually
overlooked in the current discussions about spin 1/2. Second, we see that
it makes sense to ask, what is the value of the constant 7, ,,, mentioned

+ Acting on the complex Hilbert space €2,
1 Cf. Messiah (1965), ch. X111, 1. -
€ For
o2, + 02, =~ 2 — 4[(Real & ¢ )? + (Real i@ ¢,)*]
=2 — 4[(Real & ¢,)* + (Imagd, ¢ ))?
—2—dle.ef22-1=1
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in (B)? If it happens that 7, ,, < 1, (B) would tell us nothing more than
itis already said in (A). However, if it happens that 7, ,, > 1, new informa-
tion would be brought about by (B). We are now ready to describe the
experiment to determine which of these two alternatives does really occur.

We consider a Stern-Gerlach apparatus SG; which would split an

unpolarised stream of neutrons—travelling along the y-axis of an orthogonal
frame x, ;, z—in two beams located in the y, z-plane. The operators a,,
k& and RE are supposed to give the spin components according to the x

y and z, respectively.
Let SG, be another Stern—Gerlach apparatus, similar to SG; but suitably
modified in order to send a stream of (completely) polarised neutrons along

3:. Such a beam of particles would then be fed into SG,. We assume, further-
more, that the spin magnetic momentum of the polarised neutrons would

be oriented according to (the positive sense of ) some 2%-axis orthogonal to ;
Denoting by (1,0), (0, 1) the eigenvectors of o; and by « the angle between

zand 2% we have thus that our particles would enter SG, in the (pure spin)
state

o &
Vptoy = cosi(l,O) + senE(O, 1)

As we would have
05(1“) + 03(2"‘) =2 —sen‘ux

it follows that if n,,,,> 1, then some states v,,, with « & #/2 would be
forbidden by (B), despite being physically realisable according to the
orthodox context of Quantum Mechanics.

We believe that the occurrence of forbidden states may reveal itself by

the absence of output from SG|, when z° is tilted by 72 around ; or, still,
it may be revealed by disturbances in the intensities of the beams emerging
from SG,, when « ~ /2.

About the experimental conditions, we must take into account the
interference of thermic fluctuations in the measurements. The energy of
interaction spin-magnetic field for each neutron must be significantly
greater than the thermic energy kT (here & stands for Boltzmann’s constant).
As the magnetic momentum of the neutron amounts to 10723 erg/oersted,
given an external magnetic field of 10* oersted we have around 10!% ergs
for the energy of interaction spin-external field. Thus, we would suggest:
(a) taking into SG, thermal neutrons (for example, with energy around
1072¢V); (b) maintaining an adequate part of the experimental arrangement
under a temperature significantly below 1073 °K,

Finally, let 4r be the time of transit of the particles between SG, and
SG,. Considering the question of the collapse of the neutrons into a polarised

-

-
t « is supposed to be counted from z, in the positive sense defined by the system ;, »z
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state, we deduce that it would be convenient to make 4¢ > 10713, About the
time of transit we note however that if Bohm and Bub’s ‘hidden variables’
theory is valid, then ‘unorthodox’ results may eventually arise, depending
on the value of dr—cf. Bohm & Bub, 1966, especially Section 7, and
Tutsch, 1968.
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APPENDIX

Estimate of the ‘minimum deviation® between x.y =1 and x +y =1
(¢f. Section 3)

We intend to estimate the area A(xn) which is given by the shadowed
section of Fig. 3 (if £ 2) or Fig. 4 (if n > 2).

X+y = n

X+y=n

Figure 3 Figure 4

Supposing that x and y take (all the) values in some interval [0,7], an
elementary calculation gives us, if 0 £ £ 2,

2
Al =1 -7+ 2log7

+ Here 1 is taken sufficiently large.
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andif2s9 =7,

__7 2 ; 24/7
Alm) =~ /ot —4) + dlog
The function A(y):{0,%] - R defined by the expressions above is
obviously continuous and decreasing at least up to n = 2. It is also easily
seen that A(%) must have a minimum for 0, € (2,7]. Posing n = 2cosh§
a good approximation for the increment 44 of A, when v is varied by 4,
is given by

AA = AQy + An) — Alp) = VI — )] ;f% 2/ — ) 2] —f%

=% —3e %y

Making A7 — 0, we get then dA/dy=e% —3e™? and we may deduce
that A(x) attains its minimum when e’ = 3e™?. An approximate solution
of this equation is 8 & 0-55, for which =~ 2-31.

Of course, we do not claim that the last arguments above are mathe-
matically flawless—but it can be easily verified that indeed n ~2-31 is a
point of minimum for A(x). That such minimum is unique seems to be
a safe guess....

Estimate of the ‘minimum deviation’ between s=1landx+y=
3 y=n

(¢f. Section 3)

Let us put 3/m* = y; the point at which the straight line x +y =1 is
tangent to the hyperbola xy/(1 — yx)? = 1 is easily determined as x = 0-956
and y = 0-526. The value of 5 for the tangent line is 1-482. As in the previous
case, we look for a value of ) > 1-482 which would ‘minimise the deviations’
between the previsions given by our two equations. We can safely assume
that such value of yis £1/y.

For 1-482 <7 £ 1/y, the area 4(») to be minimised is given by

e yx}

An) = A0+é f(n x)dx + f (7 - x) dx

f(l—yx)zd +f( ,_f(n—x)dx

where x, >0 is an arbxtrary constant close to 0, introduced to avoid the
divergence of the first integral. The constant 4, depends on x, and on
the maximum value taken by the variable y (which is supposed bounded,
cf. Section 3). The coordinates x, and x, are the abscissas of the points
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where the straight line y = » — x cuts the hyperbola y = (I — x)?/x, res-
pectively
Qy +m) F VI2y + ) —4(* + 1)]
22+ 1)

Substituting the integrals above by their algebraic expressions and
deriving the result in relation to 7, we find after some simplifications that
j,‘j =2:807n* + 8277y — 21-353n* — 38-912% + 63-941
Two of the roots of this equation are negative and one is <}-482. The
remaining one is the value we search for, 1-69.

References

Alvim Jr., F. (1969). Uncertainty Relations and the Lattice Theoretical Foundations of
Quantum Mechanics. Ph.D. Thesis, University of London.

Alvim Jr., F. (1970). 4 Note on Mackey’s e-Dispersion Free States. To be published.

Bohm, D. and Bub, J. (1966). Reviews of Modern Physics, 38, 453.

Born, M., Heisenberg, W. and Jordan, P. (1926). Zeirschrift fiir Physik, 15, 557.

Bouten, M., Maene, N. and van Leuven, P. (1965). Nuovo Cimento, XXXVII, 1119.

Dixmier, J. (1950). Annals of Mathematics, 51, 387.

Dixmier, J. (1953). Bulletin de la Société Mathématique de France, 81, 9.

Dunford, N. and Schwartz, J. (1958). Linear Operators—Part I, General Theory. Inter-
science Publishers, New York.

Gleason, A. M. (1957). Journal of Mathematics and Mechanics, 6, 885.

Gudder, S. P. (1965). Transactions of the American Mathematical Society, 119, 428.

Jammer, M. (1966). The Conceptual Development of Quantum Mechanics. McGraw-Hill,
New York.

Jauch, J. M, (1968). Foundations of Quantum Mechanics. Addison-Wesley, Reading.

Judge, D. (1963). Physical Review Letters, 5, 189.

Judge, D. (1964). Nuovo Cimento, XX1, 332.

Judge, D. and Lewis, J. T. (1963). Physical Review Letters, 5, 190.

Mackey, G. W. (1963). Mathematical Foundations of Quantum Mechanics. W. A. Ben-
jamin, New York.

Messiah, A. (1965). Quantum Mechanics, Vols. 1-11. North-Holland, Amsterdam.

von Neumann, J. (1932). Mathematische Grundiagen der Quantenmechanik. Springer-
Verlag, Berlin.

Riesz, F. and Sz.-Nagy, B. (1955). Functional Analysis. F. Ungar, New York,

Schotsmans, L. and van Leuven, P. (1965). Nuovo Cimento, XXXIX, 776.

Tutsch, J. H. (1968). Reviews of Modern Physics, 40, 232.

Varadarajan, V. S. (1968). Geometry of Quantum Theory, Vol. 1. D. van Nostrand,
Princeton.



